Combined adaptive <scp>neuro‐fuzzy</scp> inference system and genetic algorithm for e‐learning resilience assessment during <scp>COVID</scp> ‐19 pandemic

نویسندگان

چکیده

Given the growing use of e-learning and expansion internet-based infrastructure during COVID-19 epidemic, need for a resilient approach to systems is deeply felt. This article introduces combined technique utilizing adaptive neuro-fuzzy inference system (ANFIS) genetic algorithm (GA), named ANFIS-GA, evaluate resilience. In proposed ANFIS model, 22 features from five main factors including individual, technology, content, agility, assessment/support are used as fuzzy inputs, while resilience considered single output model. To select most significant evaluation resilience, an evolutionary feature selection based on GA used. The ANFIS-GA model has been successfully developed in virtual Iranian university. According obtained results, agility important factor, then, technology have next priorities Statistical analysis demonstrated that there no difference between experts' opinion via can be any educational institution improvement e-learning.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Breast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm

Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant&rsquo;s risk factors was used.&nbsp; First,...

متن کامل

Breast Cancer Risk Assessment Using adaptive neuro-fuzzy inference system (ANFIS) and Subtractive Clustering Algorithm

Introduction: The adaptive neuro-fuzzy inference system (ANFIS) is a soft computing model based on neural network precision and fuzzy decision-making advantages, which can highly facilitate diagnostic modeling. In this study we used this model in breast cancer detection. Methodology: A set of 1,508 records on cancerous and non-cancerous participant&rsquo;s risk factors was used.&nbsp; First,...

متن کامل

Adaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis

The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...

متن کامل

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM AND STEPWISE REGRESSION FOR COMPRESSIVE STRENGTH ASSESSMENT OF CONCRETE CONTAINING METAKAOLIN

In the current study two methods are evaluated for predicting the compressive strength of concrete containing metakaolin. Adaptive neuro-fuzzy inference system (ANFIS) model and stepwise regression (SR) model are developed as a reliable modeling method for simulating and predicting the compressive strength of concrete containing metakaolin at the different ages. The required data in training an...

متن کامل

Voting Algorithm Based on Adaptive Neuro Fuzzy Inference System for Fault Tolerant Systems

some applications are critical and must designed Fault Tolerant System. Usually Voting Algorithm is one of the principle elements of a Fault Tolerant System. Two kinds of voting algorithm are used in most applications, they are majority voting algorithm and weighted average algorithm these algorithms have some problems. Majority confronts with the problem of threshold limits and voter of weight...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Concurrency and Computation: Practice and Experience

سال: 2021

ISSN: ['1532-0634', '1532-0626']

DOI: https://doi.org/10.1002/cpe.6791